
1

Travel Model Two Development: Transit Supply
Technical Paper

Metropolitan Transportation Commission with Parsons Brinckerhoff, Inc.

September 9, 2013

m:\development\travel model two\supply\deliverables\transit\2013 04 30 draft transit network development.docx

2

1 Overview

MTC is rebuilding the representation of supply in our travel model. When complete, the new
representations of space, roadways, transit service, sidewalks, and bicycle ways will become part of the
Travel Model Two modeling system. For an overview of the model design, please see the Travel Model
Two: Strategic Supply Design technical paper1.

This technical paper describes the development of the Travel Model Two transit network. Specifically, it
discusses the steps for building the network from MTC’s regional transit database (or RTD) as well as the
Travel Model Two roadway network2. This process is implemented via a collection of Microsoft DOS
batch files, Python scripts, and Cube Voyager scripts. This paper describes these processes in detail.
Further, this paper describes the locating of transit access points (TAPs), which represent individual or
collections of transit stops.

1 http://analytics.mtc.ca.gov/foswiki/pub/Main/Documents/2012_08_24_RELEASE_Strategic_Design.pdf

2 Please see the Travel Model Two Development: Roadways memorandum for details:
http://analytics.mtc.ca.gov/foswiki/pub/Main/Documents/2013_09_09_RELEASE_Roadway_Network.pdf.

http://analytics.mtc.ca.gov/foswiki/pub/Main/Documents/2012_08_24_RELEASE_Strategic_Design.pdf
http://analytics.mtc.ca.gov/foswiki/pub/Main/Documents/2012_08_24_RELEASE_Strategic_Design.pdf
http://analytics.mtc.ca.gov/foswiki/pub/Main/Documents/2012_08_24_RELEASE_Strategic_Design.pdf
http://analytics.mtc.ca.gov/foswiki/pub/Main/Documents/2013_09_09_RELEASE_Roadway_Network.pdf

3

2 Inputs

The first step in building the transit network is to build the highway network. A companion document,
Travel Model Two Development: Roadway Supply, discusses the creation of the roadway network. The
following inputs are required:

1. tana_sp_with_maz_taz_centroids_connectors.net – The roadways network in Cube
format.

2. Intersect.gdb – This geo-database is created prior to building the roadway network and is
populated by the roadway network building process.

a. ca_jc_relevant_sp – point feature class of the California State-Plane projected
relevant TeleAtlas network nodes for the MTC region, created during the roadway
network building process.

3. RTD_June2011.gdb – A geo-database maintained by MTC’s GIS team. RTD stands for
regional transit database. This database is used in addition to the master RTD database
(mentioned below).

a. BusRoutes – line feature class of RTD bus routes along the TeleAtlas highway network;
used to build a cross-reference between the route identification number (routeId) and
route name.

b. BusRouteTraversalEdges – line feature class containing the path sequence of bus
routes along the highway network; routes are identified by the routeId from
BusRoutes.

c. Network/Roadways – line feature class representing the complete California TeleAtlas
network.

d. Network/RTDStopsRouteBuilder_June2011 – point feature class containing RTD
transit stops for all modes; contains SourceOID field which indicates the TeleAtlas link
on which the stop is located.

4. Microsoft SQL Server RTD Database – The master RTD database.
a. dbo.[ROUTE HEADWAY AND FREQUENCY] – table view containing routes, headways,

and frequency by day type class and time of day; used to create dictionary of routes and
get route attributes and headways.

5. mode_lookup.csv - Mode lookup table to translate RTD routes to the modes used in Travel
Model One to identify different transit technologies and fares. The table has the following
columns:

a. CPT_AGENCYID – Transit agency ID, found in RTD database
b. AGENCYNAME – Transit agency name, found in RTD database
c. CPT_MODE – Mode code, found in RTD database
d. SCH_ROUTEDESIGNATOR – Route name, found in RTD database
e. MODECODE – Code used in Travel Model One to identify “mode”, which is a combination

of technology and operator (fares usually vary by operator)3
f. MODEGROUP – Technology categories used by Travel Model One to quickly assign

attributes to different transit service. The codes are as follows:

3 For complete details, please see http://mtcgis.mtc.ca.gov/foswiki/Main/TransitModes.

http://mtcgis.mtc.ca.gov/foswiki/Main/TransitModes

4

1) Local bus
2) Express Bus
3) Ferry service
4) Light rail
5) Heavy rail
6) Commuter rail

The June 2011 master RTD database contained 625 total routes with 2,021 route and pattern (stop
sequence) combinations across 36 operators. The RTD geodatabase (RTD_June2011.gdb) and RTD
have 607 common routes and 1,935 common route and combinations. It was determined that the routes
that the RTD geodatabase does not contain are likely due to version differences between the RTD
database and RTD geodatabase. In addition, some RTD routes are entered in the database as planned,
conditional, or test routes and do not have stops coded. Table 1 displays the number of lines by operator
and mode imported by this network build process.

Table 1 - Lines by Operator and Mode

AGENCY NAME CPT_MODE Mode Routes

TriDelta Transit B Local bus 16

AirBART B Local bus 1

AC Transit B Local bus 73

AC Transbay B Express Bus 31

Amtrak Capitol Cor. & Reg.
Svc

T Commuter rail 1

Alameda/Oakland Ferry F Ferry service 1

Angel Island - Tiburon Ferry F Ferry service 1

American Canyon Transit B Local bus 1

BART T Heavy rail 10

Blue and Gold F Ferry service 3

Benicia Transit B Express Bus 5

The County Connection B Express Bus 7

The County Connection B Local bus 46

ACE T Commuter rail 2

Caltrain T Commuter rail 2

Dumbarton Express B Express Bus 3

Emery Go-Round B Local bus 3

Fairfield-Suisun Transit B Express Bus 1

5

Fairfield-Suisun Transit B Local bus 15

Golden Gate Ferry F Ferry service 2

Golden Gate Transit B Express Bus 6

Golden Gate Transit B Local bus 37

Alameda Harbor Bay Ferry F Ferry service 1

Stanford Marguerite Shuttle B Local bus 15

Petaluma Transit B Local bus 7

Rio Vista Delta Breeze B Local bus 2

Santa Clara VTA B Express Bus 12

Santa Clara VTA B Local bus 66

Santa Clara VTA LR Light rail 3

San Francisco MUNI B Local bus 67

San Francisco MUNI LR Light rail 7

San Francisco MUNI CC Local bus 3

samTrans B Express Bus 1

samTrans B Local bus 47

Sonoma County Transit B Local bus 25

Santa Rosa CityBus B Local bus 17

St. Helena VINE B Local bus 1

Union City Transit B Local bus 5

Vallejo Baylink Ferry B Local bus 1

Vallejo Baylink Ferry F Ferry service 1

Vacaville City Coach B Local bus 5

Napa VINE B Local bus 12

Vallejo Transit B Express Bus 2

Vallejo Transit B Local bus 8

WestCAT B Express Bus 5

WestCAT B Local bus 9

WHEELS B Local bus 18

6

3 Procedure and Scripts

The basic procedure to build the transit network is summarized below. This network build procedure is
done through a series of Python and Cube Voyager scripts, which are also described in this section.

1. Read in and store all relevant TeleAtlas nodes from ca_jc_relevant_sp.
2. Join BusRouteTraversalEdges to Roadways to build a hash table of TeleAtlas links traversed

by bus routes.
3. Read in all transit stops, project them to NAD83 California State Plane coordinate system, and

snap each to the nearest roadway network node on the link in which it is located. Since stops are
coded at nodes in Cube, all mid-link stops are snapped to the nearest node on the link in which it
is located. This is not done for rail and ferry lines since they have their own links (and nodes).

4. Query the RTD database to get headways for each of the five time of day periods (see below), as
well as the mode and operator.

5. For each bus route, read and store the link sequence from BusRouteTraversalEdges.
6. Build the node sequence for each route and write out the file in Cube TRNBUILD text format.

The Cube PT format can also be export if needed. The format of the line data for TRNBUILD
and PT is quite similar. If the CPT_MODE is not Bus, the node sequence for the route is written
as the list of stops.

7. Determine TAP centroids, and then write out a file listing the TAP centroid information (location
and mode) and another file listing the node-TAP pairs that will need (centroid) connectors.

The primary transit processing module, PublicTransit.py, requires the ArcGIS 10.0 Python 2.6
environment with arcpy. In addition, it requires the pyodbc module for access to the RTD SQL Server
database.

The module creates a TransitRoute object that represents a transit route, with attributes for the
pattern, five time of day headways, the agency, mode, and lists of the link sequence and node sequence.
The transit route object attributes are described in Table 1below.

Table 2 - Transit Route Object Attributes

Field Name Description Data Type

stopPointId RTD ID of stop int

name short name used in Cube; this name is built as [CPT_AGENCYID]_[sub-
SCH_ROUTEDESIGNATOR][X] where CPT_AGENCYID and
SCH_ROUTEDESIGNATOR are from the database, “sub-“ means removing
all special characters and only keeping enough characters so that the name
will be 11 characters or less, and [X] is an alphabetic character (between “a”
and “z”) that is added if the given route name already exists in the set

str

routeId RTD route ID number int

patternId RTD pattern ID number int

eaHeadway Early AM (3AM to 6AM) headway, in minutes. The headway is calculated
as (60 / hourly frequency of service).

int

7

Field Name Description Data Type

amHeadway AM peak (6AM to 10AM) headway, in minutes. The headway is calculated
as (60 / hourly frequency of service).

int

mdHeadway Midday headway (10AM to 3PM), in minutes. The headway is calculated as
(60 / hourly frequency of service).

int

pmHeadway PM peak headway (3PM to 7PM), in minutes. The headway is calculated as
(60 / hourly frequency of service).

int

evHeadway Evening headway (7PM to 3AM), in minutes. The headway is calculated as
(60 / hourly frequency of service).

int

agency the number of stops within a selected buffer distance of this Stop int

mode mode of transit service Mode

linkSequence sequence of Link IDs list

nodeSequence sequence of traversal node IDs for the transit line list

mode_group Mode group int

The module creates a PublicTransit object as well that is the primary class to create, process, and
write public transit lines files. The public transit object attributes and methods (i.e. functions) are
described in Table 2 and Table 3 below.

Table 3 – Public Transit Object Attributes

Field Name Description Data Type

linksDict Dictionary of Link objects that bus routes traverse; key =
linkId, value = Link

dict

nodesDict Dictionary of Node objects for nodes in the MTC region; key
= ID_hash; value = Node

dict

stopsDict Dictionary of TransitStop objects for RTD routes; key = route
and pattern concatenation, value = TransitStop

dict

routeXref Cross-reference dictionary of routeId to route name
(concatenation of route number and route pattern
separated by an underscore)

dict

transitRoutes Dictionary of TransitRoute objects dict

Table 4 – Public Transit Object Methods

Method Name Description Return Type

buildNodesDict Builds dictionary of TeleAtlas nodes in the MTC region for use in
building links.

void

buildLinkFromToDict Builds dictionary of links which bus routes traverse void

buildStopsDict Builds the dictionary of transits stops for each route. Copies the
RTD stops to a new feature class, projects them to NAD83, and
then calculates the X, Y coordinates. Finally, snaps each stop to
the nearest highway network node.

void

buildRoutesDict Queries the RTD database and builds the dictionary of weekday
routes and route attributes, including headways for each of the

void

8

time of day periods.
Note: This only considers routes which have weekday service (i.e.
the DAYTYPE_CLASS table’s WEEKDAY field is ‘Y’).

buildRouteLinkSequence Builds the link sequence for a bus route using the route traversal
edges

void

writeRouteSequence Writes the network node traversal sequence to file from the link
sequence. If the route does not have a link sequence (e.g., if it is a
train, ferry, or cable car), then the stop sequence is written.

void

analyzeStops Determines which stops to tag as TAPs by keeping only those
stops which are not within a certain buffer from other tagged
stops, keeping all premium (non-local-bus) stops, and condensing
stops within a given buffer (all TAPs are determined with respect
to a given mode).

void

__getIdHash Returns the last seven digits of a TeleAtlas node and adds the
TANA_NODE_NUMBER_OFFSET to the node number. Keyword
arguments:
val – raw TeleAtlas node number (should be 14 digits in length)

Int

__getPrintString Creates a PTLINE or TRNBUILD print string from a transit line.
Keyword arguments:
t – route name identifier string (route concatenated with pattern,
separated by an underscore)
lineType – a CubeLineFileType enumerator indicating which type
of line file to write

Str

getModeLookupTable Return the contents of the mode lookup table (sans header) as a
list of dicts, each dict representing a row and whose keys are the
column names and values the cell values

list

getDistance Get the straight-line distance between two points. real

saveData Save the PublicTransit object to a file as a serialized (pickeled)
object.

void

loadData Load a PublicTransit object from a file holding a serialized
(pickeled) instance.

void

__setTapDataStructures (Re)Initialize structures used to keep track of TAPs. void

setStopsByDistance Iterate through the routes and only tag stops as TAPs if other
stops within a certain threshold have not already been tagged.
The thresholds may vary by stop density and mode. If a stop is not
kept, it is associated with an existing TAP (tagged node).

void

setPremiumStopAsTap Tag all stops associated with a premium mode as a TAP void

createStopDensity Counts the number of stops within a given buffer around a each
stop.

void

condenseStops Collapse all stops within a certain buffer and mode to a single
TAP.

void

isModeLocal Returns True if the model is local (not premium). bool

getCounties Return a mapping from each stop point to the county is resides in. dict

getNewPoint Get a TAP point that does not overlap with its associated stop nor
another TAP point. The returned tuple with be (x point,y point).

tuple

buildTaps Create TAPs which are offset from the stop they are associated
with, and save the TAP data to a csv file and the (TAP) stop-to
(non-TAP) stop associations to a csv file.

An additional script, runBuildTransit.py, creates a PublicTransit instance and performs the
processing, line file creation, and TAP generation. It invokes the following methods in this order.

9

1. buildNodesDict - Builds dictionary of TeleAtlas nodes in the MTC region for use in
building links.

2. buildLinksDict - Builds dictionary of links which bus routes traverse
3. buildRoutesDict - Queries the RTD database and builds the dictionary of weekday routes

and route attributes, including headways for each of the time of day periods.
4. buildStopsDict - Builds the dictionary of transit stops for each route. Copies the RTD stops

to a new feature class, projects them to NAD83, and then calculates the X, Y coordinates. Finally,
snaps each stop to the nearest highway network node.

5. buildRouteLinkSequence - Builds the link sequence for a bus route using the route
traversal edges

6. writeRouteSequence - Writes the network node traversal sequence to file from the link
sequence. If the route does not have a link sequence (e.g., if it is a train, ferry, or cable car), then
the stop sequence is written.

7. saveData – Save the PublicTransit object to a file as a serialized (pickeled) object.
8. analyzeStops - Determines which stops to tag as TAPs by keeping only those stops which are

not within a certain buffer from other tagged stops, keeping all premium (non-local-bus) stops,
and condensing stops within a given buffer (all TAPs are determined with respect to a given
mode).

9. buildTaps - Create TAPs which are offset from the stop they are associated with, and save the
TAP data to a csv file and the (TAP) stop-to (non-TAP) stop associations to a csv file.

The script is run with ESRI’s version of Python 2.6 via the command line as follows:

c:\Python26\ArcGIS10.0\python.exe runBuildTransit.py

During the script processing, the following outputs are produced:

1. taps.txt holds the TAP information. It is a fixed-width text file with the following columns:
a. X – The TAP x-coordinate.
b. Y – The TAP y-coordinate.
c. COUNTY – The TAP’s county code according to the county node numbering system.
d. N – The ID number for the TAP.
e. MODE – The mode code for the TAP.

2. nodes_to_taps.txt holds the TAP to stop node connector information. It is a fixed-width
text file with the following columns:

a. A – The from node
b. B – The to node
c. FEET – The length of the connector. Note that this is not used in the final network as the

buildTransitConnectors.s script sets the TAP connector length to 1 foot so MAZ
to TAP shortest path is just MAZ to stop (not also stop to TAP node).

3. transitLines.lin is the Cube line file. Note that rail and ferry travel times are coded as link
attributes (just like for bus) as opposed to LINK statements in the LIN files. Each line has the
following attributes:

a. LINE NAME is the short name used in Cube and it is built from CPT_AGENCYID and
SCH_ROUTEDESIGNATOR

10

b. USERA1 is the name of the transit operator.
c. USERA2 is defined by one of the following integers:

i. 1 - Local bus (LB)
ii. 2 - Express Bus (EB)

iii. 3 - Ferry service (FY)
iv. 4 - Light rail (LR)
v. 5 - Heavy rail (HR)

vi. 6 - Commuter rail (CR)
d. MODE – mode code
e. ONEWAY – set to TRUE since each route is coded by direction
f. XYSPEED – set to 15 by default
g. HEADWAY[1] – early AM headway (3AM to 6AM)
h. HEADWAY[2] – AM peak headway (6AM to 10AM)
i. HEADWAY[3] – Midday headway (10AM to 3PM)
j. HEADWAY[4] – PM peak headway (3PM to 7PM)
k. HEADWAY [5] – Evening headway (7PM to 3AM)

After building the transit lines and TAPs, the following Cube Voyager scripts are used to add the transit
information on top of the highway network:

1. mergeTap.s
2. buildTransitConnectors.s
3. buildTransitNetwork.s

1.1 mergeTap.s
Purpose: Integrates the newly created TAP centroids with the existing Cube highway network and writes
the results to a new network file.

Inputs: tana_sp_with_maz_taz_centroids_connectors.net

taps.txt

Outputs: tana_sp_with_maz_taz_ centroids_connectors_taps.net

1.2 buildTransitConnectors.s
Purpose: Adds connectors from the TAP centroids to the associated transit stop node as well as the
connectors from each stop to its associated TAP node to the Cube network. This script sets the TAP
connector length to one foot so MAZ to TAP shortest path is just MAZ to stop (not also stop to TAP
node).

Inputs: tana_sp_with_maz_taz_ centroids_connectors_taps.net

nodes_to_taps.txt

Outputs: tana_sp_with_maz_taz_ centroids_connectors_taps_connectors.net

11

1.3 buildTransitNetwork.s
Purpose: Adds the routes to the Cube network. This script is run after adding the pedestrian and bike
networks to the master network.

Inputs: tana_sp_with_maz_taz_tap_centroids_connectors_osm_bike.net

transit_lines.lin

transitFactors.fac – simple Cube PT file required in order to load lines into the net file.

Outputs: tana_sp_with_maz_taz_tap_centroids_connectors_osm_bike_routes.net

1.4 buildAllTransit.bat
The buildAllTransit.bat program runs all of the Python and Cube Voyager programs to create the
transit lines and the final cube network. It calls:

1. runBuildTransit.py
2. mergeTap.s
3. buildTransitConnectors.s
4. buildTransitNetwork.s

12

4 TAP Centroid and Connector Generation
Once all of the transit routes were processed, the total number of “stop nodes” (nodes which one or more
transit stops has been associated with (or snapped to)) is 16,182. Building a TAP for each of these stops
would create transit skims that would be unfeasibly difficult (in terms of both computation and memory
use/file size), so some grouping was necessary. The basic concepts behind the groupings (as far as
network geometry) are as follows:

1. Every TAP is associated with a single transit mode, and has a MODE field value corresponding to
the mode groups (as defined in mode_lookup.csv) served by the TAP.

2. Each TAP connects to one or more stop nodes via connectors with a CNTYPE=TAP.
3. For a given transit mode, every stop node is associated with at least one TAP. If a stop node is

shared by two routes (of the same mode), then the TAP associated with that stop node is selected
separately for each route to ensure full route-to-TAP coverage. Note they may both “pick” the
same TAP. During assignment, trips are loaded from origin TAP to destination TAP and it is up
to the Cube path finder to decide which connected stops to use to choose the best path.

To actually create the groupings, the following algorithm is used (in the PublicTransit.py script):

1. For each stop, the number of other stop nodes within a ½ mile by ½ mile box (with the stop at the
center) is counted. This is called the stop density for a given stop node. A bounding box was
used instead of a bounding circle since it is easier to determine if points fall within the box.

2. For each stop node, count the number of routes (of the same mode) that use this same stop node.
This count is called the stop usage.

3. For each non-premium route, the route stop nodes are considered in order. A route stop node is
selected if it is at the beginning or end of the route, or if any other already selected stop nodes on
this route are outside of an adjusted buffer distance defined as:

𝑏𝑢𝑓𝑓𝑒𝑟 =
𝑏𝑎𝑠𝑒_𝑏𝑢𝑓𝑓𝑒𝑟

�𝑠𝑡𝑜𝑝_𝑢𝑠𝑎𝑔𝑒

The base_buffer is a buffer distance that is partitioned by the transit mode and stop density of a
given stop node and is defined in Table 5. This buffer varies by mode and was determined by
sensitivity testing a range of values and reviewing the resulting coverage of TAPs.

Table 5 - Base Buffer Distance for Combining Non-Premium Transit Stop Nodes

Mode Stop Density Base Buffer (miles) Buffer range (from / to (miles))

LOCAL_BUS 1-5 1.00 0.45 to 1.00

LOCAL_BUS 6-15 0.67 0.17 to 0.27

LOCAL_BUS 16-30 0.50 0.09 to 0.13

LOCAL_BUS 31+ 0.25 <0.06 to 0.06

EXPRESS_BUS 1-15 0.67 0.17 to 0.67

EXPRESS_BUS 16+ 0.25 <0.08 to 0.08

13

If a route stop node was not selected, then associate it with the closest selected stop so that a
connector can be built later.

4. For each premium route, select all route stop nodes.
5. Condense the stops by mode. For each mode, iterate through each stop node selected in step 3 or

step 4:
a. If the stop node has already been condensed with a TAP node, then go to the next stop

node.
b. The stop is tagged as a TAP node. Build a ¼ mile by ¼ mile box around the stop node

and condense any stop nodes selected in step 3 or step 4 to this TAP.
c. Update all of the non-selected stop node associations from step 3 to point to this new

TAP.

Once this procedure has completed, there are a total of 6,179 TAP nodes, which allows for a much more
feasible transit skimming problem.

When calculating the MAZ to TAP distance, the network impedances will be calculated from the MAZ to
the nearest stop node for each TAP. This will result in walk access distances that are less biased than if
calculated from MAZ to TAP. The downside of this approach is that the nearest stop for an MAZ does
not necessarily have the same service as the other stops served by the TAP and the line travel times from
the chosen stop during path finding may not be the same as the travel times from the nearest stop to the
MAZ.

Each TAP stop node can be selected as a TAP for one or more modes. To create a viable network, the
actual TAPs need to be created as separate points, and these points can neither be at the same location as
the stop node nor each other. Thus, for each TAP node specified in step 5 of the TAP selection procedure,
a simple process is used to offset the TAPs from the stop node: the TAP is offset by 25 feet in the X-
direction and if no TAP has been set at that point, then that becomes the TAP point. If a TAP has already
been set there, then try a one foot offset in the Y-direction. This process continues, forming a “circle”
around the stop node.

TAPs are numbered according to the county they reside in, using the range specified in the highway build
procedure memo below. The TAPs are sequentially ordered within each county starting at [X]90,001.

Table 3 - County TAP Numbering System

County Reserved TAP

1 San Francisco 90,001 – 99,999

2 San Mateo 190,001 – 199,999

3 Santa Clara 290,001 – 299,999

4 Alameda 390,001 – 399,999

14

5 Contra Costa 490,001 – 499,999

6 Solano 590,001 – 599,999

7 Napa 690,001 – 699,999

8 Sonoma 790,001 – 799,999

9 Marin 890,001 – 899,999

To provide a visual sense of the results of this process, Figure 1 shows the network with the TAPs in
pink, the TAP connectors in pink, the MAZs in black, the MAZ connectors in grey, and the transit lines in
multiple colors. Each connector has at one end a highway node that is used as a transit stop, and at the
other end a TAP and is associated with a node, but is offset by 25 feet. Also, there are multiple locations
where two TAPs are associated with the same stop node - one for local bus and one for light rail for
example.

Figure 1- TAP Connectors

15

5 Calculating MAZ to TAP Distances
Finally, the shortestPathMAZ2TAP.s script was run to generate a shortest path cost file between
MAZs and TAPs within a specified cost threshold. Since the TAP connectors have a length of one foot,
the MAZ to TAP shortest path is just MAZ to stop (not also stop to TAP node). The MAXPATHCOST was
set to 1.5 miles. The ORIGIN parameter was set to the MAZ nodes and the DESTINATION parameter was
set to the TAP nodes. The procedure takes about 25 minutes to complete and produces transit walk
access impedances for eventual input into the revised model.

Inputs: tana_sp_with_maz_taz_tap_centroids_connectors_routes.net

Outputs: mazShortestPathsMAZ2TAP.csv, a CSV file with I, J, NODE, COST (FEET)

	1 Overview
	2 Inputs
	3 Procedure and Scripts
	1.1 mergeTap.s
	1.2 buildTransitConnectors.s
	1.3 buildTransitNetwork.s
	1.4 buildAllTransit.bat

	4 TAP Centroid and Connector Generation
	5 Calculating MAZ to TAP Distances

